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Abstract

The retrieval of snow water equivalent (SWE) and snow depth is performed by inverting Special Sensor Microwave Imager (SSM/I)

brightness temperatures at 19 and 37 GHz using artificial neural network ANN-based techniques. The SSM/I used data, which consist of

Pathfinder Daily EASE-Grid brightness temperatures, were supplied by the National Snow and Ice Data Centre (NSIDC). They were

gathered during the period of time included between the beginning of 1996 and the end of 1999 all over Finland. A ground snow data set

based on observations of the Finnish Environment Institute (SYKE) and the Finnish Meteorological Institute (FMI) was used to estimate the

performances of the technique. The ANN results were confronted with those obtained using the spectral polarization difference (SPD)

algorithm, the HUT model-based iterative inversion and the Chang algorithm, by comparing the RMSE, the R2, and the regression

coefficients. In general, it was observed that the results obtained through ANN-based technique are better than, or comparable to, those

obtained through other approaches, when trained with simulated data. Performances were very good when the ANN were trained with

experimental data.
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1. Introduction

A major purpose of space-borne passive remote sensing

of snow is the retrieval of snow depth and snow water

equivalent (SWE), which are fundamental for hydrological,

meteorological, and climatological applications as well as

for discharge forecasting for hydropower production. In

general, snow parameters can be extracted from remote

sensing data through the inversion of theoretical equations

or by employing empirical algorithms based on spatial or

temporal correlation analysis. Several algorithms for the

retrieval of SWE, such as those by Aschbacher (1989),

Chang et al. (1987), reviewed and updated for forested areas

by Foster et al. (1997), Hallikainen and Jolma (1992), and

Tait (1998), are discussed in the literature. In recent times,

further studies were also conducted by Goita et al. (2003),

Goodison and Walker (1995), and Mognard and Josberger

(2002).
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Empirical formulas for the retrieval of SWE and snow

depth were proposed by Chang et al. (1987), Aschbacher

(1989), and Hallikainen and Jolma (1992). The proposed

formulas are linear and easy to invert. However, they have

the disadvantage of being closely related to the local

conditions and scene characteristics. Moreover, techniques

based on the inversion of theoretical or semi-empirical

emission models through numerical techniques were sug-

gested by Pulliainen and Hallikainen (2001) and Davis et al.

(1993). Inversion of the theoretical models is related to the

inversion of non-linear integro-differential equations and

may lead to the so-called ‘ill-posed’ problems. In the latter,

the same set of brightness temperatures may correspond to

different sets of snow parameters, and the stability of the

solution, should there be any, is not guaranteed.

The main purpose of this study was to develop and test an

inversion technique for the retrieval of snow water equiva-

lent and dry snow depth based on artificial neural networks

(ANN) by using 19- and 37-GHz Special Sensor Microwave

Imager (SSM/I) measured brightness temperatures. A com-

parison between performances of ANN-based technique and

literature techniques (i.e. SPD algorithm, HUT model itera-



Fig. 1. Test sites locations selected for the ground truth data.

Table 1

Coordinates of the test sites and land-cover distribution

Test site Latitude Longitude Forest

(%)

Agricultural

(%)

Water

(%)

Other

(%)

1 67.3015 26.5651 94.2 0.6 0.2 5

2 66.9257 29.2488 90 2.2 1.1 6.7

3 65.0423 28.8754 87.9 1.4 3.2 7.5

4 64.9802 28.3755 90.8 1.8 3.8 3.6

6 64.7057 28.0297 91.3 2.3 4.4 2

7 64.5579 28.6682 92.1 1.6 3.3 3

8 64.1955 29.4354 92.3 1.3 2.9 3.5

9 62.4177 25.0772 89.6 3.4 4.1 2.9

10 62.2126 25.2363 88.4 5 5.4 1.2

11 60.5613 25.0357 74.8 18.1 5.1 2

12 60.4107 24.2136 78.5 10.1 9.7 1.7
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tive inversion) was consequently performed. The method

was tested over Finland in the period going from 1997 to

1999, using ground measurements performed on different

test sites located in northern, central, and southern Finland.

The ANN training sets were generated by using either

simulated or measured brightness temperatures. Simulated

values were obtained by using the HUT snow emission

model (Pulliainen et al., 1999). Experimental data were

obtained from ground measurements. Once trained, the

ANN were interrogated by employing the SSM/I brightness

temperatures as input. Retrieval performances were, subse-

quently, compared with those obtained using the spectral

polarization difference (SPD) (Aschbacher, 1989), the HUT

model-based iterative inversion (Pulliainen et al., 1999) and

the Chang algorithm (Chang et al., 1987) and its modifica-

tion for forested areas (Foster et al., 1997). The paper is

divided as follows: in the following section SSM/I data and

test sites characteristics are reported, together with ground-

measured data; in Section 3, we examine inversion

approaches taken from the literature and artificial neural

networks approach; Section 4 contains the results. Section 5

regards a discussion of the results and the conclusions.
2. SSM/I data and test sites

The use of the SSM/I radiometer, flying on board of

the Defense Meteorological Satellite Program (DMSP)

series satellites, is essential for snow monitoring on a

global scale. Indeed, its functionality is not limited by

the presence of clouds and observations are available on

a daily basis. The SSM/I is a seven-channel, four-

frequency (19-, 22-, 37- and 85-GHz) microwave radio-

metric system.

All channels operate in dual vertical (V) and horizontal (H)

polarizations, except for the one at 22 GHz, which is fixed at

V polarization. The footprint ranges from 69� 43 km2 at 19

GHz to 12.5� 12.5 km2 at 85 GHz (Hollinger, 1989, 1990).

The SSM/I data collected for this study over the selected test

sites (see Fig. 1) consist of Pathfinder Daily EASE-Grid

(Equal Area SSM/I Earth Grid) brightness temperatures,

supplied by the National Snow and Ice Data Centre (NSIDC)

(Armstrong et al., 1994–1999). Data covered the period from

the beginning of 1996 to the end of 1999.

Table 1 shows the coordinates of the test sites and their

land-cover distribution. The SWE data set is based on

national operational snow observations of the Finnish

Environment Institute (SYKE). The SWE data were ac-

quired by an operator through a line of measurement that

was typically about 2 km long. The test sites were chosen

so that snow measurement lines were inside the chosen

SSM/I pixel. The values were determined by sampling

and weighing the snow. The samples were taken from a

cross section of the undisturbed snow pack. The spatial

coverage was estimated to be sufficient to describe the

SWE accurately enough over the EASE-Grid cell. Meas-

urements were performed twice a month; for the remain-

ing days, the data were modeled using a computer

program by SYKE. The snow depth measurements were

available only for the test site #1 from the website

www.wunderground.com. They were performed daily by

an automatic station. In order to assure dry snow con-

ditions, we employed data concerning only the days in

which the maximum temperature was lower than � 5 jC
and with the same condition registered over the 2 previous

 http:\\www.wunderground.com 


Table 2

Number of samples employed for each test site

Test site No. of samples

1 184

2 188

3 157

4 158

6 158

7 158

8 113

9 56

10 60

11 32

12 32
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days. The number of samples selected for each test site is

shown in Table 2.

As an example of the data used in this study, Fig. 2

shows the temporal behaviour of 19-, 37- and 85-GHz SSM/

I measured brightness temperatures, the maximum and

minimum air temperatures, and the SWE for test site #1

(Tedesco, 2002). It is interesting to observe that, as expected

(Macelloni et al., 2001), when the SWE increased, the

difference in polarizations was very strong at 19 GHz,

reduced at 37 GHz, and negligible at 85 GHz.
3. Inversion procedures

In this section, the inversion procedures proposed are

briefly introduced and examined. Moreover, the ANN-based

technique procedures developed are presented and tested

with the data at our disposal.
Fig. 2. Temporal behavior of 19-, 37- and 85-GHz SSM/I measured brightness tem
3.1. The SPD algorithm

The SPD algorithm was first suggested by Aschbacher

(1989) for the retrieval of SWE when no information on the

land-cover categories in the area of interest is available. The

algorithm, which is based on a combination of SSM/I

channels (Eq. (1)), led to Eqs. (2) and (3) for snow depth

(Eq. (2)) and snow water equivalent (Eq. (3)). The coeffi-

cients appearing in the equations are the following: A0 =

0.68, A1 =� 0.67 and B0 = 2.20, B1 =� 7.11 for all data and

A0 = 0.72, A1 =� 1.24 and B0 = 2.02, B1 =� 7.42 if Tmax is

lower than 0 jC. To analyse the validity of the values of

coefficients used in the SWE formula more in detail, they

were recomputed by using the data available in this study.

The values obtained are the following: B0 = 3.17, B1 =�
16.64 (RMSE= 41.4 mm) when considering all available

data; B0 = 2.66, B1 =� 6.78 (RMSE= 33.9 mm) if only SWE

values lower than 170 mm are considered; B0 = 2.56, B1 =

� 11.97 (RMSE = 29.7 mm) if data without springtime

measurements (middle of February, corresponding to a

SWE of about 100–120 mm as shown in Fig. 3) are taken

into consideration. Note that the computed coefficients

become similar to those proposed in Aschbacher (1989) if

only SWE values lower than 170 mm or measurements until

the end–middle February are considered.

3.2. The HUT snow emission model-based iterative

inversion algorithm

The HUT snow emission model is a single-layer model

assuming that scattering of microwave radiation inside the

medium is mostly concentrated in the forward direction. In
peratures, maximum and minimum air temperature and SWE for test site #1.



Fig. 3. Retrieved versus measured SWE with the SPD algorithm.
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the model, the scattering coefficient is weighted by an

empirical amplitude factor indicating the fraction of incident

intensity scattered into the forward direction. The employed

value of 0.96 was determined from multifrequency experi-

mental data (Pulliainen et al., 1999). The brightness tem-

perature is computed by solving the radiative transfer

equation. As forest coverage is the main land-cover category

for most test sites (Table 1), a boreal forest canopy model

proposed by Kurvonen (1994) was used to take into account

the influence of vegetation on the brightness temperature.

Atmospheric effects were disregarded and will be inves-

tigated in future works. However, in the case of methods

based on experimental data, the atmospheric effects were

directly taken into account by the data themselves.

The HUT iterative inversion algorithm is based on the

minimization of a cost function containing measured and

simulated values of the brightness temperature. Define X

(Eq. (4)) as the vector containing the observed channel

differences and Y (Eq. (5)) the corresponding model pre-

diction. By assuming that the random error in brightness

temperature predictions and the fluctuation of snow grain

size are normally distributed, the conditional probability for

SWE and D0, given the observation X, is supplied by Eq.

(6), where hD0i is the expected value (a priori information)

of snow grain size (diameter), r is the standard deviation of

the channel differences, and k is the standard deviation of

snow grain size. The cost function to be minimized for

yielding the maximum likelihood estimate for SWE and D0

is given in Eq. (7).

3.3. The Chang algorithm and its modification for forested

areas

As already said, Chang et al. (1987) proposed an algo-

rithm based on the combination of 18 and 36 GHz bright-

ness temperatures at H polarization for the retrieval of snow

depth (Eq. (8)). In this study, we used the equation proposed
in Chang et al. (1987) by replacing the 18- and 36-GHz with

the 19- and 37-GHz SSM/I channels. A revisited algorithm,

developed from the original Chang algorithm, was proposed

by Foster et al. (1997) in order to consider also the forest

cover fraction. In the modified Chang algorithm, the orig-

inal factor of 1.59 (see Eq. (8)) is replaced by the factor 0.78

for Eurasia, and the forest cover fraction is taken into

account by dividing the a factor by (1� f), where f is the

forest cover fraction (Eq. (9)). A fixed value of density (0.27

g/cm2) was employed to calculate the SWE from snow

depth, as already suggested by Hallikainen and Jolma

(1992).

3.4. Artificial neural networks technique

Multilayer perceptrons (MLP) may have one or more

hidden layers of neurons between the input and output

layers. They have a simple layer structure in which succes-

sive layers of neurons are fully interconnected, with con-

nection weights controlling the strength of the connections.

The input to each neuron in the next layer is the sum of all

its incoming connection weights multiplied by their con-

necting input neural activation value. The trainable offset

value associated with the neuron is added to the sum, and

the result is fed into the function of the neuron (activation

function). The latter can have many forms; the most

common is the non-linear sigmoid function, which is the

one used in this study. Other functions, such as the simple

linear activation, threshold activation, and hyperbolic tan-

gent activation can also be used. Activation functions used

at the output of each neuron typically yield values in the

[� 0.5, + 0.5] range. Since the output units of the mapping

network must generally produce an estimate of a parameter

with an arbitrary range (i.e. not limited to [� 0.5, + 0.5]),

the restriction on the output range must be removed. This

can be accomplished by scaling the inputs and outputs of the

network. In our case, the training phase of the ANN was

based on the back-propagation (BP) learning rule to mini-

mize the mean square error (MSE) between the desired

target vectors and the actual output vectors. Training pat-

terns were sequentially presented to the network, and the

weights of each neuron were adjusted so that the approxi-

mation created by the neural network minimized the global

error between the desired output and the added output

created by the network. The trained neural network can be

thought of as a type of non-linear, least mean square

interpolation formula for the discrete set of data points in

the training set: multilayer feedforward networks are a class

of universal approximators (Hornik et al., 1989). The

accuracy of the approximation depends mainly on training

data. The training phase ends either when a fixed MSE error

or a maximum number of iterations is reached, or when a

stop is given by the early stopping technique (Caruana et al.,

2000). In the latter, the training is interrupted when a desired

mean square error on the training set is reached or when the

error on a validation set increases, even when the error on



Table 3

Regression coefficients, R2, and RMSE errors for nets locally trained over all test sites for the ANN, SPD, HUT iterative snow emission inversion, and Chang

algorithm for the retrieval of SWE

Test site ANN SPD Iterative Chang

RMSE (mm) R2 r RMSE (mm) R2 r RMSE (mm) R2 r RMSE (mm) R2 r

1 22.96 38.78 0.970 35.56 46.8 0.715 41.55 7.84 0.694 37.45 21.85 0.403

2 21.20 29.02 0.685 50.85 39.28 0.479 59.64 8.83 0.525 30.86 16.93 0.214

3 20.38 51.39 0.824 27.3 74.37 0.595 21.73 33.94 1.20 30.7 32.33 0.385

4 21.75 47.10 0.947 25.06 67.52 0.664 37.63 27.97 1.02 29.7 32.25 0.466

6 22.21 47.55 0.715 34.27 63.68 0.506 47.12 32.81 0.944 30.9 32.02 0.375

7 21.65 45.32 0.874 23.9 70.52 0.604 35.40 36.40 0.919 28.1 35.6 0.473

8 24.17 40.18 0.970 21.09 71.88 0.669 27.09 35.59 1.24 30.3 35.02 0.554

9 14.99 62.80 0.950 19.88 65.95 0.545 21.47 57.13 1.16 18.7 19.5 0.575

10 11.36 75.91 1.201 11.8 79.41 0.691 14.58 71.00 0.865 20.9 38.33 0.596

11 15.64 41.43 1.247 17.15 48.51 0.834 18.31 42.19 0.816 19.7 51.19 0.827

12 12.03 69.89 1.201 9.61 85.38 0.797 13.56 70.91 1.138 11.9 76.55 0.975

All 24.10 44.89(ave.) 0.855 25.13 65.07 0.591 30.72 38.54(ave.) 0.957(ave.) 26.29 35.59 0.531

Fig. 4. Temporal behaviour of snow depth at Sodankylä (test site 1)

measured (continuous line) and retrieved with the SPD algorithm (dashed

line).
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the training set is still decreasing. This technique is very

useful when dealing with ANN trained with values obtained

from theoretical models. Indeed, in this case, it can be very

useful to adopt a small subset of measured data to generate

validation sets. In this way, the network is trained over a

wide range of values (due to the possibility of generating the

training set with the model) but is not over-trained for

realistic values of the sought quantity (because of the early-

stopping technique applied to the validation set made up of

measured values).

In our study, two different approaches were used for the

generation of the training sets. In the first one, brightness

temperatures simulated by means of the HUT snow emis-

sion model were employed. The second approach made use

of a subset of measured values. The aim of the two different

approaches aimed at testing the capabilities of an artificial

neural network to retrieve snow parameters when (1) trained

simulated data, validated with measurements sampled in

space or time, and (2) trained with the only measured

brightness temperatures and the corresponding ground mea-

sured data.

The input layer of the ANN consisted of four neurons,

made up of 19 and 37 GHz vertical and horizontal bright-

ness temperatures, where the output was the snow parameter

to be retrieved. One hidden layer was employed with a

number of neurons depending case by case on the parameter

to be retrieved. The learning rule employed a function

updating weight and bias values according to Levenberg-

Marquardt optimisation (Levenberg, 1944; Marquard,

1963). Several different networks were trained for each test

site. In order to define a criterion for the best trained

network, the following statistical parameters were used:

root mean square error (RMSE, Eq. (10)), R2 (Eq. (11)),

and linear regression coefficient r (Eq. (12)), with ypred as

the predicted value, ytrue the measured value, ȳpred, and ȳtrue,

respectively, the mean of ypred and ytrue and N the number of

samples. The one showing the lowest RMSE, the highest R2,

and linear regression coefficient r closest to 1 on the

validation set was selected as best trained network. In those
cases in which a validation set was not used (i.e. when the

training set was made of a subset of experimental data), the

net showing the lowest mean square error on the training set

was selected.
4. Retrieval of dry snow parameters

The results obtained in regard to the retrieval of the snow

parameters using the techniques discussed in Section 3 are

reported here as follows, together with performances of the

different techniques.

4.1. The SPD algorithm

Fig. 3 shows the measured versus SPD-retrieved SWE

for all test sites (Eq. (3)). As expected (Armstrong et al.,

1993; De Seve et al., 1997), the SPD algorithm worked well



Table 4

‘A priori’ mean values of snow grain size and standard deviation of snow

grain size used in the HUT iterative inversion technique for each test site

Test site Mean S.D.

1 1.7 1.6

2 1.6 1.5

3 1.4 1.3

4 1.4 1.3

6 1.3 1.2

7 1.4 1.3

8 1.3 1.2

9 1.3 1.2

10 1.5 1.4

11 1.6 1.5

12 1.4 1.3

Table 6

HUT snow emission model inputs range

Parameter Min Max

Snow depth (m) 0.05 1.45

Mean snow grain size (mm) 1.3 1.9

Snow temperature (C) � 50 0

Snow fractional volume 0.15 0.35

Real part of ground permittivity 4 7

Imaginary part of ground permittivity 0 2

Forest coverage (m3/ha) 0 200
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for low SWE values (100 mm), whereas the error consid-

erably increased for higher values. The RMSE, R2, and

linear regression coefficients were, respectively, RMSE=

32.27 mm, R2 = 57.32%, and r = 0.577. The results are sum-

marized in Table 3. In addition, Fig. 4 shows the behaviour

of snow depth at Sodankylä (test site #1) as measured

(continuous line) and retrieved (dashed line) with the SPD

algorithm (Eq. (2)). In this case, RMSE= 18.34 cm, R2 =

16.31%, and r= 0.558. The algorithm performances became

worse when dealing with very deep snow.

4.2. The HUT snow emission model-based iterative

inversion algorithm

The HUT snow emission model iterative inversion algo-

rithm showed good results for low SWE values. The method

has the advantage that the grain radius is not a fixed

parameter, as in other inversion procedures, but it can slight-

ly change. The fractional volume was fixed to f = 0.3. The

expected values of snow depth and mean grain radius were

given as inputs to the model as well as changes from the

expected values, according to the normal distribution for

finding the minimization of the function C (Eq. (7)). The

average and standard deviation values employed for the

grain size (diameter) were set for each test site and ranged
Table 5

Regression coefficients and RMSE obtained with the Chang et. al.

algorithm (1987) and its modification (Foster et al., 1997) for different

test sites and forest cover fraction

Test site Forest (%) Chang (1987) Foster (1997)

r RMSE r RMSE

11 74.8 0.82 19.7 1.6 38.4

12 78.5 0.9 11.9 2.05 27.16

3 87.9 0.38 30.7 1.56 122.5

10 88.4 0.59 20.9 2.5 82.3

9 89.6 0.57 18.7 2.68 88.2

2 90 0.21 30.86 1.07 154.3

4 90.8 0.46 29.7 2.47 158.4

6 91.3 0.37 30.9 2.07 172.2

7 92.1 0.47 28.1 2.95 174.9

8 92.3 0.55 30.3 3.55 193.3

1 94.2 0.40 37.45 3.48 322.8
from hD0i = 1.7 mm and r = 1.6 mm for the northern test

sites to hD0i= 1.3 mm and r = 1.2 mm for the central and

southern test sites. Table 4 reports the values of ‘a priori’

mean value of snow grain size and standard deviation of

snow grain size for each test site. The results obtained with

this method show a RMSE = 35.40 mm, R2 = 36.4%, and

r = 0.919. The performances of the method can be improved

by selecting different grain size values for each year or

season. The results obtained are summarized in Table 3.

4.3. The Chang algorithm and its modification for forested

areas

The SWE was computed by setting the snow density to a

fixed value of 0.27 g/cm2, as already suggested by Halli-

kainen and Jolma (1992). Table 5 shows the regression

coefficients and RMSE obtained by applying the Chang

algorithm (Chang et al., 1987), along with its modification

for forested areas in Eurasia (Foster et al., 1997). The results

obtained showed that the original Chang algorithm (Chang

et al., 1987) worked better for those areas where high cover

fractions of forest are present. The modified algorithm

(Foster et al., 1997) tended to get better as the forest cover

fraction decreased. Further investigations will be necessary

in order to improve the performances of the latter algorithm

in very dense forested areas.
Fig. 5. Measured versus retrieved SWE with a single ANN trained over all

test sites.



Fig. 6. Measured (line) and retrieved (crosses) snow depth with net trained

with HUT model as a function of time for Sodankylä test site.
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4.4. Artificial neural networks trained with the HUT snow

emission model

In the case of ANN trained with the HUT model, the

simulated brightness temperatures and the snow input
Fig. 7. Measured SWE versus the retrieved SWE employing, respectively, the net

from #3 to #10.
parameters were used, respectively, as inputs and outputs

of the network (i.e. snow parameters employed as input of

the model become output parameters of the net, whereas

brightness temperatures, being the output of the model,

became the input of the ANN). In order to generate the

training set, snow parameters such as snow depth, mean

snow grain size, snow temperature, density, ground permit-

tivity, and forest coverage ranged from a minimum to a

maximum value (Table 6).

The retrieval of SWE was performed by training a single

network for each test site (denoted as the local approach) or

by training only one network for all test sites (denoted as the

generalized approach). Note that, even if the selected

training set was the same for all the test sites, the differently

trained ANN showed different performances because their

validation sets were different. In the case of the local

approach, a subset consisted of one quarter of the measured

data over the selected test site was employed as a validation

set, whereas in the generalized case, the validation set was

made up of one quarter of all selected ground data over all

test sites. Once trained, the nets were interrogated over each

single test site by employing both the local and the general

approaches. The retrieval of SWE showed valid results for
s ANN N/S (a), ANN N (b), ANN S (c), ANN N/C/S (d) over the test sites



Fig. 8. Snow depth measured (line) and retrieved with the ANN trained

with experimental data (diamonds) as a function of time for the test site #1.
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values up to 150 mm, while, for higher values, results did

not appear to be as accurate. This was also true in the case of

the SPD algorithm (Fig. 5). Among the reasons for the

increasing error with SWE, there was the use of the HUT

snow emission model for generating the training set. As a

matter of fact, being the latter model a single-layer model, it

is unable to take into account the snow-pack stratification,

strongly influencing microwave snow emission.

The procedure for retrieving the snow depth from the

ANN trained with the HUT model simulated values was the

same as the one adopted for the SWE. Fig. 6 shows

measured (line) and retrieved (crosses) snow depth as a

function of time. The statistical parameters were the follow-

ing: r = 0.85, R2 = 47.48%, and RMSE = 14.64 cm. The

results obtained are summarized in Table 3.

4.5. Artificial neural networks trained with experimental

data

In the case of ANN trained with experimental data, the

input set consisted of SSM/I measured brightness temper-

atures. The output set was made up of the snow parameters

measured corresponding to the used radiometric data. Con-

trary to what was done in the case of ANN trained with the

HUT model, in this case, the early stopping technique was

not employed: the training phase stopped when a fixed

mean square error was reached or a maximum number of

iterations was performed. The ANN trained with the only

experimental data can be seen as a sort of sigmoid interpo-

lator whose weights are calculated during the training phase.

The retrieval of SWE was performed by generating the

training sets with values of SWE at different locations in

northern, southern and central Finland (test sites #1 and #2

for the north, test sites #11 and #12 for the south, and site #7

for the centre). In particular, test sites #1 and #2 were chosen

as representative of northern data, test sites from #11 to #13

of southern data, and #7 of centre data. The nets trained with

northern and southern data are denoted with ANN N/S,

those with only north or south data, respectively, with ANN

N and ANN S and those containing all data from the north,

south and centre with ANN N/C/S. Test sites not employed

for training were used to test the trained networks. Fig. 7

shows the measured SWE versus the retrieved SWE with

the employment, respectively, of the ANN N (a), ANN N/C/

S (b), ANN N/S (c), ANN S (d) over the test sites from #3 to

#10 (with the exclusion of #7, which was used as a training

set). Table 7 shows the RMSE, R2, and r for the four

different trained nets. The obtained results show that, in
Table 7

RMSE, R2, and regression coefficients for the four different trained nets

Test sites 3–10 RMSE (mm) R2 r

ANN N/S 27.52 61.18 0.835

ANN N 29.65 54.95 0.821

ANN S 19.53 80.44 0.938

ANN N/C/S 24.02 74.15 0.914
general, best performances were obtained with the ANN S

with R2 = 80.44% and RMSE= 19.53 mm.

The procedure followed for the retrieval of snow depth

over test site #1 was the same as that one regarding the

SWE. Fig. 8 shows the temporal trend of measured (line)

and retrieved (diamonds) snow depth. The statistical coef-

ficients are: RMSE = 14.28 cm, R2 = 72.98%, and r = 0.975.

Even if the RMSE obtained in this case was very close to

the one obtained with the ANN trained with the HUT

model, we can say that performances undoubtedly improved

when the R2 and r coefficients were also compared.
5. Discussion and conclusions

Through this study, observations regarding artificial

neural networks based techniques for retrieving snow water

equivalent and snow depth from passive microwave space-

borne were presented and tested. Performances of ANN-

based techniques were compared with those obtained using

the SPD algorithm (Aschbacher, 1989), the iterative inver-

sion of HUT snow emission model (Pulliainen et al., 1999),

and linear regressions (Chang et al., 1987; Foster et al.,

1997). Typically, the ANN trained with simulated data gave

better or comparable results in comparison with the other

examined approaches. The best performances were obtained

with the ANN trained with experimental data. Table 8 shows

a comparison of the performances of the different methods.

The retrieval of SWE and snow depth either with SPD

algorithm or with the iterative inversion of HUT snow

emission model gave good results when SWE values were

lower than 170 mm, or when springtime measurements were

disregarded. In particular, for highly stratified snow-packs,

the error in snow depth retrieval increased (in the HUT

model, the SWE was computed by considering the fraction-

al volume as a fixed parameter), due to the fact that the

model is a single-layer model. Also, the formula proposed



Table 8

Comparison of the results of the different approaches

Applied technique RMSE R2 r

SWE

SPD (all) 32.27 mm 57.32% 0.577

HUT iterative inversion (averaged) 30.72 mm 38.54% 0.957

ANN trained with model 24.1 mm 44.89% 0.85

ANN trained with experimental data 19.53 mm 80.44% 0.938

Depth

SPD 18.34 cm 16.31% 0.558

ANN trained with model 14.64 cm 47.78% 0.854

Chang 18.97 cm 12.38% 0.502

ANN trained with experimental data

(test site #1)

14.28 cm 72.98% 0.975
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by Chang et al. (1987) for the retrieval of snow depth gave

best results by taking into account only measurements

performed until mid-February. The modification in the

Chang algorithm for forested areas (Foster et al., 1997)

showed best performances for those areas where the forest

coverage was not very high.

Artificial neural networks trained with the HUT model

were found to be an efficient tool both for the retrieval of

SWE and the snow depth. The ANN trained with experi-

mental data showed the best performances, for both the

retrieved parameters, with RMSE and R2 respectively equal

to 19.53 mm and 80% in the case of SWE, and 14.28 cm

and 72.98% in the case of snow depth. This result is

encouraging for the practical application of these networks.

To summarize, the results obtained were very satisfactory

showing that artificial neural networks are able to retrieve

the spatial or temporal variations of the unknown param-

eter from SSM/I data, especially if trained with data

collected on test sites. The technique developed in this

study can be very useful when periodical ground measure-

ments are collected in few stations only, and no information

is available from any of the areas in between. Furthermore,

the possibility to interrogate the trained network, without

running the inversion of equations or formulas, makes this

technique suitable for close to real-time applications.

Future studies will include application and testing in

other areas, in order to validate the method in areas outside

Finland. The operational and efficiency implications of

training individual ANN for all sites, versus one ANN that

can be applied regionally will also be taken into account. In

addition, a preliminary operational algorithm which com-

bines unsupervised classification and supervised retrieval

technique is already under study.
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Appendix A. Equations

SPD ¼ ½Tbð19V Þ � Tbð37V Þ	 þ ½Tbð19V Þ � Tbð19HÞ	
ð1Þ

ds ¼ A0 � SPD� A1 ½cm	 ð2Þ

SWE ¼ B0 � SPD� B1 ½mm	 ð3Þ

¯
X ¼ ½T19V SSM=I�T37V SSM=IT19V SSM=I�T19H SSM=I	T

¼ ½X1X2	T ð4Þ

¯
Y ¼ ½T19V Model � T37V ModelT19V Model � T19H Model	T

¼ ½Y1Y2	T ð5Þ

qðSWE;D0 j X Þ~ 1

ð2pÞ3=2r2k

� exp � 1

2

X2
i¼1

Xi � YiðSWE;D0Þ
r

� �2
"(

þ d� < D0 >
2

k

� �#)
ð6Þ

CðSWE;D0Þ ¼
1

2r2
f½Y1ðSWE;D0Þ � X1	2þ½Y2ðSWE;D0Þ

� X2	2g þ
1

2k2
ðD0� < D0 >Þ2 ð7Þ

ds ¼ 1:59 � ð18H � 36HÞ ð8Þ

ds ¼
0:74 � ð18H � 36HÞ

1� f
ð9Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
k¼1

ðyðiÞpred � ȳÞ2
vuut ð10Þ

R2 ¼

XN
i¼1

ðypredðiÞ � ȳpredÞ
XN
i¼1

ðytrueðiÞ � ȳtrueÞ

XN
i¼1

ðytrueðiÞ � ȳtrueÞ
 !2

� 100 ð11Þ

r ¼

XN
i¼1

ððytrueðiÞ � ȳtrueÞðypredðiÞ � ȳpredÞÞ

XN
i¼1

ðytrueðiÞ � ȳtrueÞ2
ð12Þ
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